Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stereo Waterdrop Removal with Row-wise Dilated Attention (2108.03457v1)

Published 7 Aug 2021 in cs.CV, cs.LG, and cs.RO

Abstract: Existing vision systems for autonomous driving or robots are sensitive to waterdrops adhered to windows or camera lenses. Most recent waterdrop removal approaches take a single image as input and often fail to recover the missing content behind waterdrops faithfully. Thus, we propose a learning-based model for waterdrop removal with stereo images. To better detect and remove waterdrops from stereo images, we propose a novel row-wise dilated attention module to enlarge attention's receptive field for effective information propagation between the two stereo images. In addition, we propose an attention consistency loss between the ground-truth disparity map and attention scores to enhance the left-right consistency in stereo images. Because of related datasets' unavailability, we collect a real-world dataset that contains stereo images with and without waterdrops. Extensive experiments on our dataset suggest that our model outperforms state-of-the-art methods both quantitatively and qualitatively. Our source code and the stereo waterdrop dataset are available at \href{https://github.com/VivianSZF/Stereo-Waterdrop-Removal}{https://github.com/VivianSZF/Stereo-Waterdrop-Removal}

Citations (4)

Summary

We haven't generated a summary for this paper yet.