Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Semantic Occupancy Mapping using 3D Scene Flow and Closed-Form Bayesian Inference (2108.03180v2)

Published 6 Aug 2021 in cs.RO and cs.CV

Abstract: This paper reports on a dynamic semantic mapping framework that incorporates 3D scene flow measurements into a closed-form Bayesian inference model. Existence of dynamic objects in the environment can cause artifacts and traces in current mapping algorithms, leading to an inconsistent map posterior. We leverage state-of-the-art semantic segmentation and 3D flow estimation using deep learning to provide measurements for map inference. We develop a Bayesian model that propagates the scene with flow and infers a 3D continuous (i.e., can be queried at arbitrary resolution) semantic occupancy map outperforming its static counterpart. Extensive experiments using publicly available data sets show that the proposed framework improves over its predecessors and input measurements from deep neural networks consistently.

Citations (6)

Summary

We haven't generated a summary for this paper yet.