Papers
Topics
Authors
Recent
Search
2000 character limit reached

Conditional Separation as a Binary Relation. A Coq Assisted Proof

Published 6 Aug 2021 in cs.DM | (2108.03018v3)

Abstract: The concept of d-separation holds a pivotal role in causality theory, serving as a fundamental tool for deriving conditional independence properties from causal graphs. Pearl defined the d-separation of two subsets conditionally on a third one. In this study, we present a novel perspective by showing i) how the d-separation can be extended beyond acyclic graphs, possibly infinite, and ii) how it can be expressed and characterized as a binary relation between vertices. Compared to the typical perspectives in causality theory, our equivalence opens the door to more compact and computational proofing techniques, because the language of binary relations is well adapted to equational reasoning. Additionally, and of independent interest, the proofs of the results presented in this paper are checked with the Coq proof assistant.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 3 likes about this paper.