Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
42 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
464 tokens/sec
Kimi K2 via Groq Premium
181 tokens/sec
2000 character limit reached

Exploring Out-of-Distribution Generalization in Text Classifiers Trained on Tobacco-3482 and RVL-CDIP (2108.02684v1)

Published 5 Aug 2021 in cs.CL

Abstract: To be robust enough for widespread adoption, document analysis systems involving machine learning models must be able to respond correctly to inputs that fall outside of the data distribution that was used to generate the data on which the models were trained. This paper explores the ability of text classifiers trained on standard document classification datasets to generalize to out-of-distribution documents at inference time. We take the Tobacco-3482 and RVL-CDIP datasets as a starting point and generate new out-of-distribution evaluation datasets in order to analyze the generalization performance of models trained on these standard datasets. We find that models trained on the smaller Tobacco-3482 dataset perform poorly on our new out-of-distribution data, while text classification models trained on the larger RVL-CDIP exhibit smaller performance drops.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.