Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Robustness of Controlled Deep Reinforcement Learning for Slice Placement (2108.02505v1)

Published 5 Aug 2021 in cs.NI and cs.LG

Abstract: The evaluation of the impact of using Machine Learning in the management of softwarized networks is considered in multiple research works. Beyond that, we propose to evaluate the robustness of online learning for optimal network slice placement. A major assumption to this study is to consider that slice request arrivals are non-stationary. In this context, we simulate unpredictable network load variations and compare two Deep Reinforcement Learning (DRL) algorithms: a pure DRL-based algorithm and a heuristically controlled DRL as a hybrid DRL-heuristic algorithm, to assess the impact of these unpredictable changes of traffic load on the algorithms performance. We conduct extensive simulations of a large-scale operator infrastructure. The evaluation results show that the proposed hybrid DRL-heuristic approach is more robust and reliable in case of unpredictable network load changes than pure DRL as it reduces the performance degradation. These results are follow-ups for a series of recent research we have performed showing that the proposed hybrid DRL-heuristic approach is efficient and more adapted to real network scenarios than pure DRL.

Citations (5)

Summary

We haven't generated a summary for this paper yet.