Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ICECAP: Information Concentrated Entity-aware Image Captioning (2108.02050v1)

Published 4 Aug 2021 in cs.CV and cs.MM

Abstract: Most current image captioning systems focus on describing general image content, and lack background knowledge to deeply understand the image, such as exact named entities or concrete events. In this work, we focus on the entity-aware news image captioning task which aims to generate informative captions by leveraging the associated news articles to provide background knowledge about the target image. However, due to the length of news articles, previous works only employ news articles at the coarse article or sentence level, which are not fine-grained enough to refine relevant events and choose named entities accurately. To overcome these limitations, we propose an Information Concentrated Entity-aware news image CAPtioning (ICECAP) model, which progressively concentrates on relevant textual information within the corresponding news article from the sentence level to the word level. Our model first creates coarse concentration on relevant sentences using a cross-modality retrieval model and then generates captions by further concentrating on relevant words within the sentences. Extensive experiments on both BreakingNews and GoodNews datasets demonstrate the effectiveness of our proposed method, which outperforms other state-of-the-arts. The code of ICECAP is publicly available at https://github.com/HAWLYQ/ICECAP.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Anwen Hu (22 papers)
  2. Shizhe Chen (52 papers)
  3. Qin Jin (94 papers)
Citations (20)