Papers
Topics
Authors
Recent
2000 character limit reached

Automatic classification of eclipsing binary stars using deep learning methods

Published 3 Aug 2021 in astro-ph.SR, astro-ph.IM, and cs.LG | (2108.01640v1)

Abstract: In the last couple of decades, tremendous progress has been achieved in developing robotic telescopes and, as a result, sky surveys (both terrestrial and space) have become the source of a substantial amount of new observational data. These data contain a lot of information about binary stars, hidden in their light curves. With the huge amount of astronomical data gathered, it is not reasonable to expect all the data to be manually processed and analyzed. Therefore, in this paper, we focus on the automatic classification of eclipsing binary stars using deep learning methods. Our classifier provides a tool for the categorization of light curves of binary stars into two classes: detached and over-contact. We used the ELISa software to obtain synthetic data, which we then used for the training of the classifier. For evaluation purposes, we collected 100 light curves of observed binary stars, in order to evaluate a number of classifiers. We evaluated semi-detached eclipsing binary stars as detached. The best-performing classifier combines bidirectional Long Short-Term Memory (LSTM) and a one-dimensional convolutional neural network, which achieved 98% accuracy on the evaluation set. Omitting semi-detached eclipsing binary stars, we could obtain 100% accuracy in classification.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.