Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Light-curve Signals with a Deep Learning Based Object Detection Algorithm. II. A General Light Curve Classification Framework (2311.08080v2)

Published 14 Nov 2023 in astro-ph.IM, astro-ph.HE, astro-ph.SR, and cs.CV

Abstract: Vast amounts of astronomical photometric data are generated from various projects, requiring significant effort to identify variable stars and other object classes. In light of this, a general, widely applicable classification framework would simplify the process of designing specific classifiers for various astronomical objects. We present a novel deep learning framework for classifying light curves using a weakly supervised object detection model. Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data. This allows for automatic feature extraction from both time and frequency domains, enabling our model to handle data across different scales and sampling intervals. We train our model on data sets obtained from Kepler, TESS, and Zwicky Transient Facility multiband observations of variable stars and transients. We achieve an accuracy of 87% for combined variables and transient events, which is comparable to the performance of previous feature-based models. Our trained model can be utilized directly for other missions, such as the All-sky Automated Survey for Supernovae, without requiring any retraining or fine-tuning. To address known issues with miscalibrated predictive probabilities, we apply conformal prediction to generate robust predictive sets that guarantee true-label coverage with a given probability. Additionally, we incorporate various anomaly detection algorithms to empower our model with the ability to identify out-of-distribution objects. Our framework is implemented in the Deep-LC toolkit, which is an open-source Python package hosted on Github (https://github.com/ckm3/Deep-LC) and PyPI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kaiming Cui (16 papers)
  2. D. J. Armstrong (55 papers)
  3. Fabo Feng (58 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com