Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning Based Networked Control with Network Delays for Signal Temporal Logic Specifications (2108.01317v3)

Published 3 Aug 2021 in eess.SY, cs.LG, and cs.SY

Abstract: We apply deep reinforcement learning (DRL) to design of a networked controller with network delays to complete a temporal control task that is described by a signal temporal logic (STL) formula. STL is useful to deal with a specification with a bounded time interval for a dynamical system. In general, an agent needs not only the current system state but also the past behavior of the system to determine a desired control action for satisfying the given STL formula. Additionally, we need to consider the effect of network delays for data transmissions. Thus, we propose an extended Markov decision process using past system states and control actions, which is called a $\tau d$-MDP, so that the agent can evaluate the satisfaction of the STL formula considering the network delays. Thereafter, we apply a DRL algorithm to design a networked controller using the $\tau d$-MDP. Through simulations, we also demonstrate the learning performance of the proposed algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.