Visualizing Data using GTSNE
Abstract: We present a new method GTSNE to visualize high-dimensional data points in the two dimensional map. The technique is a variation of t-SNE that produces better visualizations by capturing both the local neighborhood structure and the macro structure in the data. This is particularly important for high-dimensional data that lie on continuous low-dimensional manifolds. We illustrate the performance of GTSNE on a wide variety of datasets and compare it the state of art methods, including t-SNE and UMAP. The visualizations produced by GTSNE are better than those produced by the other techniques on almost all of the datasets on the macro structure preservation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.