Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-shot calibration of low-cost air pollution (PM2.5) sensors using meta-learning (2108.00640v1)

Published 2 Aug 2021 in cs.LG and eess.SP

Abstract: Low-cost particulate matter sensors are transforming air quality monitoring because they have lower costs and greater mobility as compared to reference monitors. Calibration of these low-cost sensors requires training data from co-deployed reference monitors. Machine Learning based calibration gives better performance than conventional techniques, but requires a large amount of training data from the sensor, to be calibrated, co-deployed with a reference monitor. In this work, we propose novel transfer learning methods for quick calibration of sensors with minimal co-deployment with reference monitors. Transfer learning utilizes a large amount of data from other sensors along with a limited amount of data from the target sensor. Our extensive experimentation finds the proposed Model-Agnostic- Meta-Learning (MAML) based transfer learning method to be the most effective over other competitive baselines.

Citations (12)

Summary

We haven't generated a summary for this paper yet.