Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Coupled and uncoupled sign-changing spikes of singularly perturbed elliptic systems (2108.00299v2)

Published 31 Jul 2021 in math.AP

Abstract: We study the existence and asymptotic behavior of solutions having positive and sign-changing components to the singularly perturbed system of elliptic equations \begin{equation*} \begin{cases} -\varepsilon2\Delta u_i+u_i=\mu_i|u_i|{p-2}u_i + \sum\limits_{\substack{j=1 \ j \not=i}}\ell\lambda_{ij}\beta_{ij}|u_j|{\alpha_{ij}}|u_i|{\beta_{ij} -2}u_i,\ u_i \in H1_0(\Omega), \quad u_i\neq 0, \qquad i=1,\ldots,\ell, \end{cases} \end{equation*} in a bounded domain $\Omega$ in $\mathbb{R}N$, with $N\geq 4$, $\varepsilon>0$, $\mu_i>0$, $\lambda_{ij}=\lambda_{ji}<0$, $\alpha_{ij}, \beta_{ij}>1$, $\alpha_{ij}=\beta_{ji}$, $\alpha_{ij} + \beta_{ij} = p\in (2,2*)$, and $2{*}:=\frac{2N}{N-2}$. If $\Omega$ is the unit ball we obtain solutions with a prescribed combination of positive and nonradial sign-changing components exhibiting two different types of asymptotic behavior as $\varepsilon\to 0$: solutions whose limit profile is a rescaling of a solution with positive and nonradial sign-changing components of the limit system \begin{equation*} \begin{cases} -\Delta u_i+u_i=\mu_i|u_i|{p-2}u_i + \sum\limits_{\substack{j=1 \ j \not=i}}\ell\lambda_{ij}\beta_{ij}|u_j|{\alpha_{ij}}|u_i|{\beta_{ij} -2}u_i,\ u_i \in H1(\mathbb{R}N), \quad u_i\neq 0, \qquad i=1,\ldots,\ell, \end{cases} \end{equation*} and solutions whose limit profile is a solution of the uncoupled system, i.e., after rescaling and translation, the limit profile of the $i$-th component is a positive or a nonradial sign-changing solution to the equation $$-\Delta u+u=\mu_i|u|{p-2}u,\qquad u \in H1(\mathbb{R}N), \qquad u\neq 0.$$

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.