Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
136 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

PKSpell: Data-Driven Pitch Spelling and Key Signature Estimation (2107.14009v1)

Published 27 Jul 2021 in cs.SD and eess.AS

Abstract: We present PKSpell: a data-driven approach for the joint estimation of pitch spelling and key signatures from MIDI files. Both elements are fundamental for the production of a full-fledged musical score and facilitate many MIR tasks such as harmonic analysis, section identification, melodic similarity, and search in a digital music library. We design a deep recurrent neural network model that only requires information readily available in all kinds of MIDI files, including performances, or other symbolic encodings. We release a model trained on the ASAP dataset. Our system can be used with these pre-trained parameters and is easy to integrate into a MIR pipeline. We also propose a data augmentation procedure that helps retraining on small datasets. PKSpell achieves strong key signature estimation performance on a challenging dataset. Most importantly, this model establishes a new state-of-the-art performance on the MuseData pitch spelling dataset without retraining.

Citations (11)

Summary

We haven't generated a summary for this paper yet.