Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Signal Detection Scheme Based on Deep Learning in OFDM Systems (2107.13423v1)

Published 24 Jul 2021 in cs.IT, cs.LG, eess.SP, and math.IT

Abstract: Channel estimation and signal detection are essential steps to ensure the quality of end-to-end communication in orthogonal frequency-division multiplexing (OFDM) systems. In this paper, we develop a DDLSD approach, i.e., Data-driven Deep Learning for Signal Detection in OFDM systems. First, the OFDM system model is established. Then, the long short-term memory (LSTM) is introduced into the OFDM system model. Wireless channel data is generated through simulation, the preprocessed time series feature information is input into the LSTM to complete the offline training. Finally, the trained model is used for online recovery of transmitted signal. The difference between this scheme and existing OFDM receiver is that explicit estimated channel state information (CSI) is transformed into invisible estimated CSI, and the transmit symbol is directly restored. Simulation results show that the DDLSD scheme outperforms the existing traditional methods in terms of improving channel estimation and signal detection performance.

Summary

We haven't generated a summary for this paper yet.