A Hybrid Reduced Order Model for nonlinear LES filtering
Abstract: We develop a Reduced Order Model (ROM) for a Large Eddy Simulation (LES) approach that combines a three-step algorithm called Evolve-Filter-Relax (EFR) with a computationally efficient finite volume method. The main novelty of our ROM lies in the use within the EFR algorithm of a nonlinear, deconvolution-based indicator function that identifies the regions of the domain where the flow needs regularization. The ROM we propose is a hybrid projection/data-driven strategy: a classical Proper Orthogonal Decomposition Galerkin projection approach for the reconstruction of the velocity and the pressure fields and a data-driven reduction method to approximate the indicator function used by the nonlinear differential filter. This data-driven technique is based on interpolation with Radial Basis Functions. We test the performance of our ROM approach on two benchmark problems: 2D and 3D unsteady flow past a cylinder at Reynolds number 0 <= Re <= 100. The accuracy of the ROM is assessed against results obtained with the full order model for velocity, pressure, indicator function and time evolution of the aerodynamics coefficients.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.