Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Remains of Visual Semantic Embeddings (2107.11991v1)

Published 26 Jul 2021 in cs.CV

Abstract: Zero shot learning (ZSL) has seen a surge in interest over the decade for its tight links with the mechanism making young children recognize novel objects. Although different paradigms of visual semantic embedding models are designed to align visual features and distributed word representations, it is unclear to what extent current ZSL models encode semantic information from distributed word representations. In this work, we introduce the split of tiered-ImageNet to the ZSL task, in order to avoid the structural flaws in the standard ImageNet benchmark. We build a unified framework for ZSL with contrastive learning as pre-training, which guarantees no semantic information leakage and encourages linearly separable visual features. Our work makes it fair for evaluating visual semantic embedding models on a ZSL setting in which semantic inference is decisive. With this framework, we show that current ZSL models struggle with encoding semantic relationships from word analogy and word hierarchy. Our analyses provide motivation for exploring the role of context language representations in ZSL tasks.

Summary

We haven't generated a summary for this paper yet.