Papers
Topics
Authors
Recent
2000 character limit reached

Augmentation Pathways Network for Visual Recognition (2107.11990v2)

Published 26 Jul 2021 in cs.CV

Abstract: Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations are either unstable or show adverse effects during training, owing to the big gap between the original and augmented images. This paper introduces a novel network design, noted as Augmentation Pathways (AP), to systematically stabilize training on a much wider range of augmentation policies. Notably, AP tames various heavy data augmentations and stably boosts performance without a careful selection among augmentation policies. Unlike traditional single pathway, augmented images are processed in different neural paths. The main pathway handles the light augmentations, while other pathways focus on the heavier augmentations. By interacting with multiple paths in a dependent manner, the backbone network robustly learns from shared visual patterns among augmentations, and suppresses the side effect of heavy augmentations at the same time. Furthermore, we extend AP to high-order versions for high-order scenarios, demonstrating its robustness and flexibility in practical usage. Experimental results on ImageNet demonstrate the compatibility and effectiveness on a much wider range of augmentations, while consuming fewer parameters and lower computational costs at inference time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.