Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Bootstrapping Whittle Estimators (2107.11270v1)

Published 23 Jul 2021 in math.ST, stat.ME, and stat.TH

Abstract: Fitting parametric models by optimizing frequency domain objective functions is an attractive approach of parameter estimation in time series analysis. Whittle estimators are a prominent example in this context. Under weak conditions and the (realistic) assumption that the true spectral density of the underlying process does not necessarily belong to the parametric class of spectral densities fitted, the distribution of Whittle estimators typically depends on difficult to estimate characteristics of the underlying process. This makes the implementation of asymptotic results for the construction of confidence intervals or for assessing the variability of estimators, difficult in practice. This paper proposes a frequency domain bootstrap method to estimate the distribution of Whittle estimators which is asymptotically valid under assumptions that not only allow for (possible) model misspecification but also for weak dependence conditions which are satisfied by a wide range of stationary stochastic processes. Adaptions of the bootstrap procedure developed to incorporate different modifications of Whittle estimators proposed in the literature, like for instance, tapered, de-biased or boundary extended Whittle estimators, are also considered. Simulations demonstrate the capabilities of the bootstrap method proposed and its good finite sample performance. A real-life data analysis also is presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.