Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Correspondence-Free Point Cloud Registration with SO(3)-Equivariant Implicit Shape Representations (2107.10296v2)

Published 21 Jul 2021 in cs.CV and cs.LG

Abstract: This paper proposes a correspondence-free method for point cloud rotational registration. We learn an embedding for each point cloud in a feature space that preserves the SO(3)-equivariance property, enabled by recent developments in equivariant neural networks. The proposed shape registration method achieves three major advantages through combining equivariant feature learning with implicit shape models. First, the necessity of data association is removed because of the permutation-invariant property in network architectures similar to PointNet. Second, the registration in feature space can be solved in closed-form using Horn's method due to the SO(3)-equivariance property. Third, the registration is robust to noise in the point cloud because of the joint training of registration and implicit shape reconstruction. The experimental results show superior performance compared with existing correspondence-free deep registration methods.

Citations (33)

Summary

We haven't generated a summary for this paper yet.