Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse composite likelihood selection (2107.09586v1)

Published 20 Jul 2021 in stat.ME

Abstract: Composite likelihood has shown promise in settings where the number of parameters $p$ is large due to its ability to break down complex models into simpler components, thus enabling inference even when the full likelihood is not tractable. Although there are a number of ways to formulate a valid composite likelihood in the finite-$p$ setting, there does not seem to exist agreement on how to construct composite likelihoods that are comp utationally efficient and statistically sound when $p$ is allowed to diverge. This article introduces a method to select sparse composite likelihoods by minimizing a criterion representing the statistical efficiency of the implied estimator plus an $L_1$-penalty discouraging the inclusion of too many sub-likelihood terms. Conditions under which consistent model selection occurs are studied. Examples illustrating the procedure are analysed in detail and applied to real data.

Summary

We haven't generated a summary for this paper yet.