Papers
Topics
Authors
Recent
Search
2000 character limit reached

Parsimonious and Efficient Likelihood Composition by Gibbs Sampling

Published 17 Feb 2015 in stat.ME | (1502.04800v1)

Abstract: The traditional maximum likelihood estimator (MLE) is often of limited use in complex high-dimensional data due to the intractability of the underlying likelihood function. Maximum composite likelihood estimation (McLE) avoids full likelihood specification by combining a number of partial likelihood objects depending on small data subsets, thus enabling inference for complex data. A fundamental difficulty in making the McLE approach practicable is the selection from numerous candidate likelihood objects for constructing the composite likelihood function. In this paper, we propose a flexible Gibbs sampling scheme for optimal selection of sub-likelihood components. The sampled composite likelihood functions are shown to converge to the one maximally informative on the unknown parameters in equilibrium, since sub-likelihood objects are chosen with probability depending on the variance of the corresponding McLE. A penalized version of our method generates sparse likelihoods with a relatively small number of components when the data complexity is intense. Our algorithms are illustrated through numerical examples on simulated data as well as real genotype SNP data from a case-control study.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.