Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rationality and $C_2$-cofiniteness of certain diagonal coset vertex operator algebras (2107.09400v1)

Published 20 Jul 2021 in math.QA

Abstract: In this paper, it is shown that the diagonal coset vertex operator algebra $C(L_{\mathfrak{g}}(k+2,0),L_{\mathfrak{g}}(k,0)\otimes L_{\mathfrak{g}}(2,0))$ is rational and $C_2$-cofinite in case $\mathfrak{g}=so(2n), n\geq 3$ and $k$ is an admissible number for $\hat{\mathfrak{g}}$. It is also shown that the diagonal coset vertex operator algebra $C(L_{sl_2}(k+4,0),L_{sl_2}(k,0)\otimes L_{sl_2}(4,0))$ is rational and $C_2$-cofinite in case $k$ is an admissible number for $\hat{sl_2}$. Furthermore, irreducible modules of $C(L_{sl_2}(k+4,0),L_{sl_2}(k,0)\otimes L_{sl_2}(4,0))$ are classified in case $k$ is a positive odd integer.

Summary

We haven't generated a summary for this paper yet.