Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attribution of Predictive Uncertainties in Classification Models (2107.08756v3)

Published 19 Jul 2021 in cs.LG, cs.CV, and stat.ML

Abstract: Predictive uncertainties in classification tasks are often a consequence of model inadequacy or insufficient training data. In popular applications, such as image processing, we are often required to scrutinise these uncertainties by meaningfully attributing them to input features. This helps to improve interpretability assessments. However, there exist few effective frameworks for this purpose. Vanilla forms of popular methods for the provision of saliency masks, such as SHAP or integrated gradients, adapt poorly to target measures of uncertainty. Thus, state-of-the-art tools instead proceed by creating counterfactual or adversarial feature vectors, and assign attributions by direct comparison to original images. In this paper, we present a novel framework that combines path integrals, counterfactual explanations and generative models, in order to procure attributions that contain few observable artefacts or noise. We evidence that this outperforms existing alternatives through quantitative evaluations with popular benchmarking methods and data sets of varying complexity.

Citations (5)

Summary

We haven't generated a summary for this paper yet.