Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Potential of Lexical Paraphrases for Mitigating Noise-Induced Comprehension Errors (2107.08337v1)

Published 18 Jul 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Listening in noisy environments can be difficult even for individuals with a normal hearing thresholds. The speech signal can be masked by noise, which may lead to word misperceptions on the side of the listener, and overall difficulty to understand the message. To mitigate hearing difficulties on listeners, a co-operative speaker utilizes voice modulation strategies like Lombard speech to generate noise-robust utterances, and similar solutions have been developed for speech synthesis systems. In this work, we propose an alternate solution of choosing noise-robust lexical paraphrases to represent an intended meaning. Our results show that lexical paraphrases differ in their intelligibility in noise. We evaluate the intelligibility of synonyms in context and find that choosing a lexical unit that is less risky to be misheard than its synonym introduced an average gain in comprehension of 37% at SNR -5 dB and 21% at SNR 0 dB for babble noise.

Citations (3)

Summary

We haven't generated a summary for this paper yet.