Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Data-Driven Investigation of Noise-Adaptive Utterance Generation with Linguistic Modification (2210.10252v1)

Published 19 Oct 2022 in cs.CL, cs.SD, and eess.AS

Abstract: In noisy environments, speech can be hard to understand for humans. Spoken dialog systems can help to enhance the intelligibility of their output, either by modifying the speech synthesis (e.g., imitate Lombard speech) or by optimizing the language generation. We here focus on the second type of approach, by which an intended message is realized with words that are more intelligible in a specific noisy environment. By conducting a speech perception experiment, we created a dataset of 900 paraphrases in babble noise, perceived by native English speakers with normal hearing. We find that careful selection of paraphrases can improve intelligibility by 33% at SNR -5 dB. Our analysis of the data shows that the intelligibility differences between paraphrases are mainly driven by noise-robust acoustic cues. Furthermore, we propose an intelligibility-aware paraphrase ranking model, which outperforms baseline models with a relative improvement of 31.37% at SNR -5 dB.

Citations (1)

Summary

We haven't generated a summary for this paper yet.