Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Measuring Fairness in Generative Models (2107.07754v1)

Published 16 Jul 2021 in cs.LG

Abstract: Deep generative models have made much progress in improving training stability and quality of generated data. Recently there has been increased interest in the fairness of deep-generated data. Fairness is important in many applications, e.g. law enforcement, as biases will affect efficacy. Central to fair data generation are the fairness metrics for the assessment and evaluation of different generative models. In this paper, we first review fairness metrics proposed in previous works and highlight potential weaknesses. We then discuss a performance benchmark framework along with the assessment of alternative metrics.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.