Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optical Inspection of the Silicon Micro-strip Sensors for the CBM Experiment employing Artificial Intelligence (2107.07714v2)

Published 16 Jul 2021 in physics.ins-det, cs.CV, and hep-ex

Abstract: Optical inspection of 1191 silicon micro-strip sensors was performed using a custom made optical inspection setup, employing a machine-learning based approach for the defect analysis and subsequent quality assurance. Furthermore, metrological control of the sensor's surface was performed. In this manuscript, we present the analysis of various sensor surface defects. Among these are implant breaks, p-stop breaks, aluminium strip opens, aluminium strip shorts, surface scratches, double metallization layer defects, passivation layer defects, bias resistor defects as well as dust particle identification. The defect detection was done using the application of Convolutional Deep Neural Networks (CDNNs). From this, defective strips and defect clusters were identified, as well as a 2D map of the defects using their geometrical positions on the sensor was performed. Based on the total number of defects found on the sensor's surface, a method for the estimation of sensor's overall quality grade and quality score was proposed.

Citations (7)

Summary

We haven't generated a summary for this paper yet.