Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Considerations for optimizing photometric classification of supernovae from the Rubin Observatory (2107.07531v2)

Published 15 Jul 2021 in astro-ph.IM and astro-ph.CO

Abstract: The Vera C. Rubin Observatory will increase the number of observed supernovae (SNe) by an order of magnitude; however, it is impossible to spectroscopically confirm the class for all the SNe discovered. Thus, photometric classification is crucial but its accuracy depends on the not-yet-finalized observing strategy of Rubin Observatory's Legacy Survey of Space and Time (LSST). We quantitatively analyze the impact of the LSST observing strategy on SNe classification using simulated multi-band light curves from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). First, we augment the simulated training set to be representative of the photometric redshift distribution per supernovae class, the cadence of observations, and the flux uncertainty distribution of the test set. Then we build a classifier using the photometric transient classification library snmachine, based on wavelet features obtained from Gaussian process fits, yielding similar performance to the winning PLAsTiCC entry. We study the classification performance for SNe with different properties within a single simulated observing strategy. We find that season length is important, with light curves of 150 days yielding the highest performance. Cadence also has an important impact on SNe classification; events with median inter-night gap <3.5 days yield higher classification performance. Interestingly, we find that large gaps (>10 days) in light curve observations do not impact performance if sufficient observations are available on either side, due to the effectiveness of the Gaussian process interpolation. This analysis is the first exploration of the impact of observing strategy on photometric supernova classification with LSST.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.