Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptable Agent Populations via a Generative Model of Policies (2107.07506v1)

Published 15 Jul 2021 in cs.LG and cs.NE

Abstract: In the natural world, life has found innumerable ways to survive and often thrive. Between and even within species, each individual is in some manner unique, and this diversity lends adaptability and robustness to life. In this work, we aim to learn a space of diverse and high-reward policies on any given environment. To this end, we introduce a generative model of policies, which maps a low-dimensional latent space to an agent policy space. Our method enables learning an entire population of agent policies, without requiring the use of separate policy parameters. Just as real world populations can adapt and evolve via natural selection, our method is able to adapt to changes in our environment solely by selecting for policies in latent space. We test our generative model's capabilities in a variety of environments, including an open-ended grid-world and a two-player soccer environment. Code, visualizations, and additional experiments can be found at https://kennyderek.github.io/adap/.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kenneth Derek (1 paper)
  2. Phillip Isola (84 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com