Some results on similar configurations in subsets of $\mathbb{F}_q^d$ (2301.12841v1)
Abstract: In this paper, we study problems about the similar configurations in $\mathbb{F}qd$. Let $G=(V, E)$ be a graph, where $V={1, 2, \ldots, n}$ and $E\subseteq{V\choose2}$. For a set $\mathcal{E}$ in $\mathbb{F}_qd$, we say that $\mathcal{E}$ contains a pair of $G$ with dilation ratio $r$ if there exist distinct $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_n\in\mathcal{E}$ and distinct $\boldsymbol{y}_1, \boldsymbol{y}_2, \ldots, \boldsymbol{y}_n\in\mathcal{E}$ such that $|\boldsymbol{y}_i-\boldsymbol{y}{j}|=r|\boldsymbol{x}_i-\boldsymbol{x}_j|\neq0$ whenever ${i, j}\in E$, where $|\boldsymbol{x}|:=x_12+x_22+\cdots+x_d2$ for $\boldsymbol{x}=(x_1, x_2, \ldots, x_d)\in\mathbb{F}_qd$. We show that if $\mathcal{E}$ has size at least $C_kq{d/2}$, then $\mathcal{E}$ contains a pair of $k$-stars with dilation ratio $r$, and that if $\mathcal{E}$ has size at least $C\cdot\min\left{q{(2d+1)/3}, \max\left{q3, q{d/2}\right}\right}$, then $\mathcal{E}$ contains a pair of $4$-paths with dilation ratio $r$. Our method is based on enumerative combinatorics and graph theory.