Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Carle's Game: An Open-Ended Challenge in Exploratory Machine Creativity (2107.05786v1)

Published 13 Jul 2021 in cs.AI and cs.LG

Abstract: This paper is both an introduction and an invitation. It is an introduction to CARLE, a Life-like cellular automata simulator and reinforcement learning environment. It is also an invitation to Carle's Game, a challenge in open-ended machine exploration and creativity. Inducing machine agents to excel at creating interesting patterns across multiple cellular automata universes is a substantial challenge, and approaching this challenge is likely to require contributions from the fields of artificial life, AI, machine learning, and complexity, at multiple levels of interest. Carle's Game is based on machine agent interaction with CARLE, a Cellular Automata Reinforcement Learning Environment. CARLE is flexible, capable of simulating any of the 262,144 different rules defining Life-like cellular automaton universes. CARLE is also fast and can simulate automata universes at a rate of tens of thousands of steps per second through a combination of vectorization and GPU acceleration. Finally, CARLE is simple. Compared to high-fidelity physics simulators and video games designed for human players, CARLE's two-dimensional grid world offers a discrete, deterministic, and atomic universal playground, despite its complexity. In combination with CARLE, Carle's Game offers an initial set of agent policies, learning and meta-learning algorithms, and reward wrappers that can be tailored to encourage exploration or specific tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Q. Tyrell Davis (8 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.