Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Function Subject to Deterministic Nonlinear Equality Constraints

Published 7 Jul 2021 in math.OC | (2107.03512v1)

Abstract: An algorithm is proposed, analyzed, and tested experimentally for solving stochastic optimization problems in which the decision variables are constrained to satisfy equations defined by deterministic, smooth, and nonlinear functions. It is assumed that constraint function and derivative values can be computed, but that only stochastic approximations are available for the objective function and its derivatives. The algorithm is of the sequential quadratic optimization variety. A distinguishing feature of the algorithm is that it allows inexact subproblem solutions to be employed, which is particularly useful in large-scale settings when the matrices defining the subproblems are too large to form and/or factorize. Conditions are imposed on the inexact subproblem solutions that account for the fact that only stochastic objective gradient estimates are available. Convergence results in expectation are established for the method. Numerical experiments show that it outperforms an alternative algorithm that employs highly accurate subproblem solutions in every iteration.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.