Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Machine Learning for Cybersecurity and Computer Vision: Current Developments and Challenges (2107.02894v1)

Published 30 Jun 2021 in cs.CR and cs.LG

Abstract: We provide a comprehensive overview of adversarial machine learning focusing on two application domains, i.e., cybersecurity and computer vision. Research in adversarial machine learning addresses a significant threat to the wide application of machine learning techniques -- they are vulnerable to carefully crafted attacks from malicious adversaries. For example, deep neural networks fail to correctly classify adversarial images, which are generated by adding imperceptible perturbations to clean images.We first discuss three main categories of attacks against machine learning techniques -- poisoning attacks, evasion attacks, and privacy attacks. Then the corresponding defense approaches are introduced along with the weakness and limitations of the existing defense approaches. We notice adversarial samples in cybersecurity and computer vision are fundamentally different. While adversarial samples in cybersecurity often have different properties/distributions compared with training data, adversarial images in computer vision are created with minor input perturbations. This further complicates the development of robust learning techniques, because a robust learning technique must withstand different types of attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Bowei Xi (6 papers)
Citations (24)