Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence-based Out-of-Distribution Detection: A Comparative Study and Analysis (2107.02568v1)

Published 6 Jul 2021 in cs.CV

Abstract: Image classification models deployed in the real world may receive inputs outside the intended data distribution. For critical applications such as clinical decision making, it is important that a model can detect such out-of-distribution (OOD) inputs and express its uncertainty. In this work, we assess the capability of various state-of-the-art approaches for confidence-based OOD detection through a comparative study and in-depth analysis. First, we leverage a computer vision benchmark to reproduce and compare multiple OOD detection methods. We then evaluate their capabilities on the challenging task of disease classification using chest X-rays. Our study shows that high performance in a computer vision task does not directly translate to accuracy in a medical imaging task. We analyse factors that affect performance of the methods between the two tasks. Our results provide useful insights for developing the next generation of OOD detection methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Christoph Berger (6 papers)
  2. Magdalini Paschali (27 papers)
  3. Ben Glocker (143 papers)
  4. Konstantinos Kamnitsas (50 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.