Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comprehensive Survey on the State-of-the-art Data Provenance Approaches for Security Enforcement (2107.01678v1)

Published 4 Jul 2021 in cs.CR

Abstract: Data provenance collects comprehensive information about the events and operations in a computer system at both application and system levels. It provides a detailed and accurate history of transactions that help delineate the data flow scenario across the whole system. Data provenance helps achieve system resilience by uncovering several malicious attack traces after a system compromise that are leveraged by the analyzer to understand the attack behavior and discover the level of damage. Existing literature demonstrates a number of research efforts on information capture, management, and analysis of data provenance. In recent years, provenance in IoT devices attracts several research efforts because of the proliferation of commodity IoT devices. In this survey paper, we present a comparative study of the state-of-the-art approaches to provenance by classifying them based on frameworks, deployed techniques, and subjects of interest. We also discuss the emergence and scope of data provenance in IoT networks. Finally, we present the urgency in several directions that data provenance needs to pursue, including data management and analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Md Morshed Alam (5 papers)
  2. Weichao Wang (15 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.