Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dense generic well-rounded lattices (2107.00958v2)

Published 2 Jul 2021 in math.NT

Abstract: It is well-known that the densest lattice sphere packings also typically have large kissing numbers. The sphere packing density maximization problem is known to have a solution among well-rounded lattices, of which the integer lattice $\mathbb{Z}n$ is the simplest example. The integer lattice is also an example of a generic well-rounded lattice, i.e., a well-rounded lattice with a minimal kissing number. However, the integer lattice has the worst density among well-rounded lattices. In this paper, the problem of constructing explicit generic well-rounded lattices with dense sphere packings is considered. To this end, so-called tame lattices recently introduced by Damir and Mantilla-Soler are utilized. Tame lattices came to be as a generalization of the ring of integers of certain abelian number fields. The sublattices of tame lattices constructed in this paper are shown to always result in either a generic well-rounded lattice or the lattice $A_n$, with density ranging between that of $\mathbb{Z}n$ and $A_n$. In order to find generic well-rounded lattices with densities beyond that of $A_n$, explicit deformations of some known densest lattice packings are constructed, yielding a family of generic well-rounded lattices with densities arbitrarily close to the optimum. In addition to being an interesting mathematical problem on its own right, the constructions are also motivated from a more practical point of view. Namely, generic well-rounded lattices with high packing density make good candidates for lattice codes used in secure wireless communications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.