Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Spotlight: A General Method for Discovering Systematic Errors in Deep Learning Models (2107.00758v2)

Published 1 Jul 2021 in cs.LG and stat.ML

Abstract: Supervised learning models often make systematic errors on rare subsets of the data. When these subsets correspond to explicit labels in the data (e.g., gender, race) such poor performance can be identified straightforwardly. This paper introduces a method for discovering systematic errors that do not correspond to such explicitly labelled subgroups. The key idea is that similar inputs tend to have similar representations in the final hidden layer of a neural network. We leverage this structure by "shining a spotlight" on this representation space to find contiguous regions where the model performs poorly. We show that the spotlight surfaces semantically meaningful areas of weakness in a wide variety of existing models spanning computer vision, NLP, and recommender systems.

Citations (64)

Summary

We haven't generated a summary for this paper yet.