Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Large DAGs by Combining Continuous Optimization and Feedback Arc Set Heuristics (2107.00571v1)

Published 1 Jul 2021 in cs.LG

Abstract: Bayesian networks represent relations between variables using a directed acyclic graph (DAG). Learning the DAG is an NP-hard problem and exact learning algorithms are feasible only for small sets of variables. We propose two scalable heuristics for learning DAGs in the linear structural equation case. Our methods learn the DAG by alternating between unconstrained gradient descent-based step to optimize an objective function and solving a maximum acyclic subgraph problem to enforce acyclicity. Thanks to this decoupling, our methods scale up beyond thousands of variables.

Citations (2)

Summary

We haven't generated a summary for this paper yet.