Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Orthonormal Product Quantization Network for Scalable Face Image Retrieval (2107.00327v4)

Published 1 Jul 2021 in cs.CV

Abstract: Existing deep quantization methods provided an efficient solution for large-scale image retrieval. However, the significant intra-class variations like pose, illumination, and expressions in face images, still pose a challenge for face image retrieval. In light of this, face image retrieval requires sufficiently powerful learning metrics, which are absent in current deep quantization works. Moreover, to tackle the growing unseen identities in the query stage, face image retrieval drives more demands regarding model generalization and system scalability than general image retrieval tasks. This paper integrates product quantization with orthonormal constraints into an end-to-end deep learning framework to effectively retrieve face images. Specifically, a novel scheme that uses predefined orthonormal vectors as codewords is proposed to enhance the quantization informativeness and reduce codewords' redundancy. A tailored loss function maximizes discriminability among identities in each quantization subspace for both the quantized and original features. An entropy-based regularization term is imposed to reduce the quantization error. Experiments are conducted on four commonly-used face datasets under both seen and unseen identities retrieval settings. Our method outperforms all the compared deep hashing/quantization state-of-the-arts under both settings. Results validate the effectiveness of the proposed orthonormal codewords in improving models' standard retrieval performance and generalization ability. Combing with further experiments on two general image datasets, it demonstrates the broad superiority of our method for scalable image retrieval.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com