Papers
Topics
Authors
Recent
Search
2000 character limit reached

Multimodal Shape Completion via IMLE

Published 30 Jun 2021 in cs.CV | (2106.16237v2)

Abstract: Shape completion is the problem of completing partial input shapes such as partial scans. This problem finds important applications in computer vision and robotics due to issues such as occlusion or sparsity in real-world data. However, most of the existing research related to shape completion has been focused on completing shapes by learning a one-to-one mapping which limits the diversity and creativity of the produced results. We propose a novel multimodal shape completion technique that is effectively able to learn a one-to-many mapping and generates diverse complete shapes. Our approach is based on the conditional Implicit MaximumLikelihood Estimation (IMLE) technique wherein we condition our inputs on partial 3D point clouds. We extensively evaluate our approach by comparing it to various baselines both quantitatively and qualitatively. We show that our method is superior to alternatives in terms of completeness and diversity of shapes.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.