Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations

Published 29 Jun 2021 in math.NA and cs.NA | (2106.15249v2)

Abstract: In this paper, by employing the asymptotic expansion method, we prove the existence and uniqueness of a smoothing solution for a time-dependent nonlinear singularly perturbed partial differential equation (PDE) with a small-scale parameter. As a by-product, we obtain an approximate smooth solution, constructed from a sequence of reduced stationary PDEs with vanished high-order derivative terms. We prove that the accuracy of the constructed approximate solution can be in any order of this small-scale parameter in the whole domain, except a negligible transition layer. Furthermore, based on a simpler link equation between this approximate solution and the source function, we propose an efficient algorithm, called the asymptotic expansion regularization (AER), for solving nonlinear inverse source problems governed by the original PDE. The convergence-rate results of AER are proven, and the a posteriori error estimation of AER is also studied under some a priori assumptions of source functions. Various numerical examples are provided to demonstrate the efficiency of our new approach.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.