Papers
Topics
Authors
Recent
2000 character limit reached

DROID: Driver-centric Risk Object Identification

Published 24 Jun 2021 in cs.CV and cs.RO | (2106.13201v3)

Abstract: Identification of high-risk driving situations is generally approached through collision risk estimation or accident pattern recognition. In this work, we approach the problem from the perspective of subjective risk. We operationalize subjective risk assessment by predicting driver behavior changes and identifying the cause of changes. To this end, we introduce a new task called driver-centric risk object identification (DROID), which uses egocentric video to identify object(s) influencing a driver's behavior, given only the driver's response as the supervision signal. We formulate the task as a cause-effect problem and present a novel two-stage DROID framework, taking inspiration from models of situation awareness and causal inference. A subset of data constructed from the Honda Research Institute Driving Dataset (HDD) is used to evaluate DROID. We demonstrate state-of-the-art DROID performance, even compared with strong baseline models using this dataset. Additionally, we conduct extensive ablative studies to justify our design choices. Moreover, we demonstrate the applicability of DROID for risk assessment.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.