Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Mixed-Integer Conic Programming Formulation for Computing the Flexibility Index under Multivariate Gaussian Uncertainty (2106.12702v1)

Published 24 Jun 2021 in math.OC, cs.SY, and eess.SY

Abstract: We present a methodology for computing the flexibility index when uncertainty is characterized using multivariate Gaussian random variables. Our approach computes the flexibility index by solving a mixed-integer conic program (MICP). This methodology directly characterizes ellipsoidal sets to capture correlations in contrast to previous methodologies that employ approximations. We also show that, under a Gaussian representation, the flexibility index can be used to obtain a lower bound for the so-called stochastic flexibility index (i.e., the probability of having feasible operation). Our results also show that the methodology can be generalized to capture different types of uncertainty sets.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.