Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI Poincaré 2.0: Machine Learning Conservation Laws from Differential Equations (2203.12610v2)

Published 23 Mar 2022 in cs.LG, astro-ph.EP, nlin.SI, physics.class-ph, and physics.flu-dyn

Abstract: We present a machine learning algorithm that discovers conservation laws from differential equations, both numerically (parametrized as neural networks) and symbolically, ensuring their functional independence (a non-linear generalization of linear independence). Our independence module can be viewed as a nonlinear generalization of singular value decomposition. Our method can readily handle inductive biases for conservation laws. We validate it with examples including the 3-body problem, the KdV equation and nonlinear Schr\"odinger equation.

Citations (20)

Summary

We haven't generated a summary for this paper yet.