Papers
Topics
Authors
Recent
Search
2000 character limit reached

Recent Deep Semi-supervised Learning Approaches and Related Works

Published 22 Jun 2021 in cs.LG, cs.AI, and cs.CV | (2106.11528v3)

Abstract: This work proposes an overview of the recent semi-supervised learning approaches and related works. Despite the remarkable success of neural networks in various applications, there exist a few formidable constraints, including the need for a large amount of labeled data. Therefore, semi-supervised learning, which is a learning scheme in which scarce labels and a larger amount of unlabeled data are utilized to train models (e.g., deep neural networks), is getting more important. Based on the key assumptions of semi-supervised learning, which are the manifold assumption, cluster assumption, and continuity assumption, the work reviews the recent semi-supervised learning approaches. In particular, the methods in regard to using deep neural networks in a semi-supervised learning setting are primarily discussed. In addition, the existing works are first classified based on the underlying idea and explained, then the holistic approaches that unify the aforementioned ideas are detailed.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.