Papers
Topics
Authors
Recent
2000 character limit reached

On Deep Neural Network Calibration by Regularization and its Impact on Refinement

Published 17 Jun 2021 in cs.LG and cs.CV | (2106.09385v3)

Abstract: Deep neural networks have been shown to be highly miscalibrated. often they tend to be overconfident in their predictions. It poses a significant challenge for safety-critical systems to utilise deep neural networks (DNNs), reliably. Many recently proposed approaches to mitigate this have demonstrated substantial progress in improving DNN calibration. However, they hardly touch upon refinement, which historically has been an essential aspect of calibration. Refinement indicates separability of a network's correct and incorrect predictions. This paper presents a theoretically and empirically supported exposition reviewing refinement of a calibrated model. Firstly, we show the breakdown of expected calibration error (ECE), into predicted confidence and refinement under the assumption of over-confident predictions. Secondly, linking with this result, we highlight that regularization based calibration only focuses on naively reducing a model's confidence. This logically has a severe downside to a model's refinement as correct and incorrect predictions become tightly coupled. Lastly, connecting refinement with ECE also provides support to existing refinement based approaches which improve calibration but do not explain the reasoning behind it. We support our claims through rigorous empirical evaluations of many state of the art calibration approaches on widely used datasets and neural networks. We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the usefulness of a DNN by degrading its refinement. Even under natural data shift, this calibration-refinement trade-off holds for the majority of calibration methods.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.