Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilinear Dirichlet Processes (2106.08852v1)

Published 16 Jun 2021 in cs.LG and stat.ML

Abstract: Dependent Dirichlet processes (DDP) have been widely applied to model data from distributions over collections of measures which are correlated in some way. On the other hand, in recent years, increasing research efforts in machine learning and data mining have been dedicated to dealing with data involving interactions from two or more factors. However, few researchers have addressed the heterogeneous relationship in data brought by modulation of multiple factors using techniques of DDP. In this paper, we propose a novel technique, MultiLinear Dirichlet Processes (MLDP), to constructing DDPs by combining DP with a state-of-the-art factor analysis technique, multilinear factor analyzers (MLFA). We have evaluated MLDP on real-word data sets for different applications and have achieved state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.