Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Reinforcement Learning Under Minimax Regret for Green Security (2106.08413v1)

Published 15 Jun 2021 in cs.LG, cs.AI, and cs.MA

Abstract: Green security domains feature defenders who plan patrols in the face of uncertainty about the adversarial behavior of poachers, illegal loggers, and illegal fishers. Importantly, the deterrence effect of patrols on adversaries' future behavior makes patrol planning a sequential decision-making problem. Therefore, we focus on robust sequential patrol planning for green security following the minimax regret criterion, which has not been considered in the literature. We formulate the problem as a game between the defender and nature who controls the parameter values of the adversarial behavior and design an algorithm MIRROR to find a robust policy. MIRROR uses two reinforcement learning-based oracles and solves a restricted game considering limited defender strategies and parameter values. We evaluate MIRROR on real-world poaching data.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com