Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Margin Circle Loss for Speaker Verification (2106.08004v1)

Published 15 Jun 2021 in cs.SD, cs.CL, and eess.AS

Abstract: Deep-Neural-Network (DNN) based speaker verification sys-tems use the angular softmax loss with margin penalties toenhance the intra-class compactness of speaker embeddings,which achieved remarkable performance. In this paper, we pro-pose a novel angular loss function called adaptive margin cir-cle loss for speaker verification. The stage-based margin andchunk-based margin are applied to improve the angular discrim-ination of circle loss on the training set. The analysis on gradi-ents shows that, compared with the previous angular loss likeAdditive Margin Softmax(Am-Softmax), circle loss has flexi-ble optimization and definite convergence status. Experimentsare carried out on the Voxceleb and SITW. By applying adap-tive margin circle loss, our best system achieves 1.31%EER onVoxceleb1 and 2.13% on SITW core-core.

Citations (10)

Summary

We haven't generated a summary for this paper yet.