Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Bridge Metric Spaces: Few-shot Joint Learning of Intent Detection and Slot Filling (2106.07343v1)

Published 25 May 2021 in cs.CL and cs.AI

Abstract: In this paper, we investigate few-shot joint learning for dialogue language understanding. Most existing few-shot models learn a single task each time with only a few examples. However, dialogue language understanding contains two closely related tasks, i.e., intent detection and slot filling, and often benefits from jointly learning the two tasks. This calls for new few-shot learning techniques that are able to capture task relations from only a few examples and jointly learn multiple tasks. To achieve this, we propose a similarity-based few-shot learning scheme, named Contrastive Prototype Merging network (ConProm), that learns to bridge metric spaces of intent and slot on data-rich domains, and then adapt the bridged metric space to the specific few-shot domain. Experiments on two public datasets, Snips and FewJoint, show that our model significantly outperforms the strong baselines in one and five shots settings.

Citations (11)

Summary

We haven't generated a summary for this paper yet.